Synthesis and characterization of titania nanotube arrays by electrochemical method for dye sensitized solar cells
نویسنده
چکیده
TiO2 is known as one of the excellent and demanded materials for its wide applications. In this paper, the growth of TiO2 nanotube arrays by using simple and inexpensive electrochemical anodizing of a titanium foil is presented. The vertically oriented TiO2 nanotube arrays were prepared in electrolyte solution of 3 wt % HF (40%) and dimethyl sulfoxide (DMSO) at constant DC voltage of 30 V for 17h. The photoluminescence, crystallinity and surface morphology of prepared nanotube arrays were studied by Spectrometer, XRD and FE-SEM. Room temperature photoluminescence measurement showed a sharp peak at 383 nm corresponding to the band gap energy (3.2 eV) of bulk TiO2 anatase phase. However, humps at 412 nm and 471 nm are attributed to the free excitations where as at 521 is attributed to the formation of oxygen vacancy at the surface of titania nanotube arrays. XRD measurement revealed the anatase phase of TiO2 nanotube arrays and found good matching with others reported works. FESEM measurement showed well aligned formation of nanotube arrays of ~80 nm of inner diameter and ~20 nm of wall thickness of TiO2 nanotubes.
منابع مشابه
High Efficient Transparent TiO2 Nanotube Dye-Sensitized Solar Cells: Adhesion of TiO2 Nanotube Membrane to FTO by Two Different Methods
In order to fabricate transparent TiO2 nanotube dye-sensitized solar cells, anodically growth nanotube membranes are detached from Ti substrate by a re-anodization method. The membranes are transferred on FTO glass by two different methods. At the first one, 100mM Ti-isopropoxide is used to make TiO2 nanoparticles for adhering TiO2 nanotube membranes to FTO and ...
متن کاملSynthesis and characterization of Ag-doped TiO2 nanostructure and investigation of its application as dye-sensitized solar cell
A new strategy for enhancing the efficiency of TiO2 dye-sensitized solar cells (DSSCs) by doping foreign ion into TiO2 lattice via sol-gel process is reported. DSSCs are based on a semiconductor (i.e., TiO2), formed between a photo-sensitized anode and an electrolyte. In order to reach high conversion efficiency, it is important to increase the electron injection and optical absorption. One pro...
متن کاملDye-Sensitized TiO2 Nanotube Solar Cells with Markedly Enhanced Performance via Rational Surface Engineering
Highly ordered anodic TiO2 nanotube arrays fabricated by electrochemical anodization were sensitized with ruthenium dye N-719 to yield dye-sensitized TiO2 nanotube solar cells. Rational surface treatments on photoanode TiO2 nanotubes markedly improved the device performance. With TiCl4 treatment, in conjunction with oxygen plasma exposure under optimized conditions, dye-sensitized TiO2 nanotube...
متن کاملControlling Morphological Parameters of Anodized Titania Nanotubes for Optimized Solar Energy Applications
Anodized TiO2 nanotubes have received much attention for their use in solar energy applications including water oxidation cells and hybrid solar cells [dye-sensitized solar cells (DSSCs) and bulk heterojuntion solar cells (BHJs)]. High surface area allows for increased dye-adsorption and photon absorption. Titania nanotubes grown by anodization of titanium in fluoride-containing electrolytes ar...
متن کاملSynthesis and Application of Two Organic Dyes Based on Indoline in Dye-Sensitized Solar Cells
In this paper we sensitized two new organic days dye 1 and dye 2 based on thioindigo with phenothiazine as the electron donor group. We used acrylic acid and cyanoacrylic acid as the electron acceptor anchoring group in dye 1 and dye 2 respectively. The proposed dyes were sensitized from phenothiazine as the starting material by standard reactions and characterized by different techniques such ...
متن کامل